skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chekroun, Mickaël D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Detection and attribution (DA) studies are cornerstones of climate science, providing crucial evidence for policy decisions. Their goal is to link observed climate change patterns to anthropogenic and natural drivers via the optimal fingerprinting method (OFM). We show that response theory for nonequilibrium systems offers the physical and dynamical basis for OFM, including the concept of causality used for attribution. Our framework clarifies the method’s assumptions, advantages, and potential weaknesses. We use our theory to perform DA for prototypical climate change experiments performed on an energy balance model and on a low-resolution coupled climate model. We also explain the underpinnings of degenerate fingerprinting, which offers early warning indicators for tipping points. Finally, we extend the OFM to the nonlinear response regime. Our analysis shows that OFM has broad applicability across diverse stochastic systems influenced by time-dependent forcings, with potential relevance to ecosystems, quantitative social sciences, and finance, among others. Published by the American Physical Society2024 
    more » « less
  2. Conceptual delay models have played a key role in the analysis and understanding of El Niño-Southern Oscillation (ENSO) variability. Based on such delay models, we propose in this work a novel scenario for the fabric of ENSO variability resulting from the subtle interplay between stochastic disturbances and nonlinear invariant sets emerging from bifurcations of the unperturbed dynamics. To identify these invariant sets we adopt an approach combining Galerkin–Koornwinder (GK) approximations of delay differential equations and center-unstable manifold reduction techniques. In that respect, GK approximation formulas are reviewed and synthesized, as well as analytic approximation formulas of center-unstable manifolds. The reduced systems derived thereof enable us to conduct a thorough analysis of the bifurcations arising in a standard delay model of ENSO. We identify thereby a saddle-node bifurcation of periodic orbits co-existing with a subcritical Hopf bifurcation, and a homoclinic bifurcation for this model. We show furthermore that the computation of unstable periodic orbits (UPOs) unfolding through these bifurcations is considerably simplified from the reduced systems. These dynamical insights enable us in turn to design a stochastic model whose solutions---as the delay parameter drifts slowly through its critical values---produce a wealth of temporal patterns resembling ENSO events and exhibiting also decadal variability. Our analysis dissects the origin of this variability and shows how it is tied to certain transition paths between invariant sets of the unperturbed dynamics (for ENSO’s interannual variability) or simply due to the presence of UPOs close to the homoclinic orbit (for decadal variability). In short, this study points out the role of solution paths evolving through tipping ‘‘points’’ beyond equilibria, as possible mechanisms organizing the variability of certain climate phenomena. 
    more » « less
  3. Abstract Recent years have seen a surge in interest for leveraging neural networks to parameterize small-scale or fast processes in climate and turbulence models. In this short paper, we point out two fundamental issues in this endeavor. The first concerns the difficulties neural networks may experience in capturing rare events due to limitations in how data is sampled. The second arises from the inherent multiscale nature of these systems. They combine high-frequency components (like inertia-gravity waves) with slower, evolving processes (geostrophic motion). This multiscale nature creates a significant hurdle for neural network closures. To illustrate these challenges, we focus on the atmospheric 1980 Lorenz model, a simplified version of the Primitive Equations that drive climate models. This model serves as a compelling example because it captures the essence of these difficulties. 
    more » « less
  4. A stochastic framework is exhibited to produce systematically a broadband response from periodic solutions of time-delay systems. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)